
Comparison of Different Navigation Prediction
Techniques

Prasad J. Koyande, Kavita P. Shirsat

Computer Engineering, Mumbai University
Vidyalankar Institute of Technology

 Wadala, Mumbai, India

Abstract --- Discovering web navigation patterns plays
an important role in web mining which is used for
prediction and management of website efficiently. As
we all know that web site structure is always changed,
many Navigation Prediction Techniques need not only
consider the frequency of click behavior but also web
site structure to mine web navigation patterns for
navigation prediction, dynamic mining approach is also
based on the previous mining results and formed new
patterns just from the modifying some part of the web
data. We had compared Different Navigation Prediction
Techniques based on criteria’s like data structure used for
intermediate storage and mining, original database used for
mining, re-mining is done to track changes in the web
structure, pattern tree construction for improving prediction
phase and Technique used for navigation prediction and we
found that Mining Web Navigation Patterns with Dynamic
Thresholds for Navigation Prediction is the best from that
technologies

Keywords— Web mining, Navigation Prediction

I. INTRODUCTION
In recent years, vast amount of data would be easily

produced and collected from the web environment because
of the growth of Internet. Hence, how to discover the
useful information and knowledge efficiently from these
vast amounts of web data has become a more and more
important topic recently. Web navigation pattern mining is
present to improve the web services by extracting useful
information and knowledge from vast amount of web data.

However, the web data grows rapidly and some of the
user sequences may be out of date over time. Therefore, the
web navigation patterns should be updated when the new
web data is inserted into original web navigation sequence
database. Therefore, the web navigation patterns should be
updated when the new web data are inserted into original
web navigation sequence database. In addition, the
frequent web navigation patterns may not always be the
interesting web navigation patterns because the access
design of web pages is not the same. Therefore, a flexible
model of mining navigation patterns with dynamic
thresholds is needed. Unfortunately, to the best of our
knowledge, there is no any web navigation pattern mining
algorithm which considers dynamic thresholds. Besides,
there is no any existing work could make navigation
prediction in the incremental mining environment.

In this paper, we study a novel efficient
incremental algorithm for mining web navigation patterns

with dynamic thresholds named id-Matrix-Miner (Inverted-
database Matrix Miner), for re-mining all the web
navigation patterns when the database is updated.
Furthermore, a novel structure we proposed named id-
Matrix (Inverted-database Matrix) and inverted file
database are selected as our storage structure for id-Matrix-
Miner to store original web dataset. The id-Matrix is kept
in memory and the projected database is store in hard disk.
That is, all of the necessary information in original web
dataset is stored in these two kinds of storage. Hence, id-
Matrix-Miner can avoid unnecessary scanning of the
original web dataset. Thus, I/O cost could be frugal. The
id-Matrix-Miner is about 3-5 times faster than IDTM
algorithm in most case. Moreover, based on the id-Matrix-
Miner, we also study a navigation prediction model which
could handle such incremental mining environment.

II. NAVIGATION PATTERN MINING

Web navigation pattern has a great resemblance to web
traversal pattern. The most significant difference between
the two kinds of patterns is that web navigation patterns
consist of contiguous web page references. Thus, the
traversal pattern mining algorithms are easy to apply to the
navigation pattern mining. Most of studies had discussed
incremental web traversal or navigation patterns mining
problems which consider the uniform threshold and
dynamic threshold.

A. FS-Miner Algorithm
1) Frequent Sequences: Let I = {i1, i2, ..., im} be a set

of unique items, such as page references. A
sequence Seq = <p1p2...pn> is an ordered
collection of items with pi ∈ I for 1 ≤ i ≤ n. A
database DB (for web usage mining typically a web
log file) stores a set of records (sessions). Each
record has two fields: the record ID field, SID, and
the input sequence field, InSeq.[8]

For a link h, the support count, Supplink(h), is the number
of times this link appears in the database. For example if
the link a−b appears in the database five times we say that
Supplink(a − b) = 5. For a sequence Seq = <p1p2...pn> we
define its size as n which is the number of items in that
sequence. Given two sequence S = <p1p2...pn> and R =
<q1q2...qm> we say that S is a subsequence of R if there is
some i, 1 ≤ i ≤ m − n + 1, such that p1 = qi, p2 = qi+1, ...,
pn = qi+(n−1).

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1930

The support count Suppseq(Seq) for a sequence
Seq is the number of times the sequence appears in the
database either as a the full sequence or as a subsequence
of sessions.
The behavior of our system is governed by two main
parameters. The first parameter is minimum link support
count, MSuppClink, which is the minimum count that a
link should satisfy to be considered potentially frequent.
MSuppClink is obtained by multiplying the total number of
links in the database by a desired minimum link support
threshold ratio MSuppRlink. MSuppRlink is the frequency
of the link in the database to the total number of links in
the database (Supplink/total # of links in the database)
which a link has to satisfy in order to be considered
potentially frequent. MSuppRlink is a system parameter
(not set by
the user) and is used by the FS-tree construction algorithm
to decide what links to include in the FS-tree as will be
discussed later. The second parameter MSuppCseq, is the
minimum sequence support count, that denotes the
minimum number of times that a sequence needs to occur
in the database to be considered frequent. MSuppCseq is
obtained by multiplying the total number of links in the
database by a desired minimum sequence support threshold
ratio MSuppRseq. This desired ratio is the frequency of the
sequence in the database to the total number of links in the
database (Suppseq/total # of links in the database) which a
sequence has to satisfy in order to be considered frequent.
MSuppRseq is set by the user and is used by the FS-Mining
algorithm during the mining process.

Based on MSuppClink and MSuppCseq we
classify the links in the database into three types:

• Frequent links: links with support count Supplink
≥MSuppCseq≥ MSuppClink. These links are stored in HT
and are represented in the FS-tree and can be part of
frequent sequences.

• Potentially Frequent links: links with support count
Supplink ≥MSuppClink and Supplink <MSuppCseq. These
links are stored in the HT and are represented in the FS-tree
but they can’t be part of frequent sequences (needed for
efficient incremental and interactive performance).

• Non-frequent links: links with support count Supplink
<MSuppClink. These links are stored in NFLT and are not
represented in the FS-tree (needed for efficient incremental
and interactive performance).

Only frequent links may appear in frequent
sequences, hence, when mining the FS-tree we consider
only links of this type. Before we introduce the FS-mine
algorithm, we highlight the properties of the FS-tree.

2) Properties of the FS-trees: The FS-tree has the
following properties that are important to the FS-
mine algorithm:

• Any input sequence that has non-frequent link(s) is
pruned before being inserted into the FS-tree.
• If MSuppClink <MSuppCseq, the FS-tree is storing
more information than required for the current mining
task.

• We can obtain all possible subsequences that end with
a given frequent link h by following the ListH pointer of
h from the header table to correct FS-tree branches.
• In order to extract a sequence that ends with a certain
link h from an FS-tree branch, we only need to examine
the branch prefix path that ends with that link (h)
backward up to (maximum) the tree root.

Now we describe in detail the mining steps that we use to
extract frequent sequences from the FS-tree. We assume
MSuppClink = 2 and MSuppCseq = 3 as our running
example.

3) FS-tree Mining Step:. Fig 1 lists the FS-Mine
Algorithm. The algorithm has four main steps that
are performed for only frequent links (potentially
frequent links are excluded) in the header table
(HT):

• Extracting derived paths. For link h inHT with
Supplink(h) ≥MSuppCseq we extract its derived paths
by following the ListH pointer of h from HT to edges
in the FS-tree. For each path in the FS-tree that
contains h we extract its path prefix that ends at this
edge and go maximum up to the tree root7. We call
these paths derived paths of link h. For example, from
Fig. 2, if we follow the ListH pointer for the link e − h
from the header table we can extract two derived
paths: (c − d : 4, d − e : 4, e − h : 1) and (b − d : 3, d
− e : 2, e − h : 2).

• Constructing conditional sequence bas:. Given the set
of derived paths of link h extracted in previous step we
construct the conditional sequence base for h by
setting the frequency count of each link in the path to
the count of the h link (this gives the frequency of the
full derived path). We also remove h from the end of
each of the derived paths For example, given the two
derived paths extracted above for link e − h, the
conditional base for that link consists of: (c − d : 1, d
− e : 1) and (b − d : 2, d − e : 2).

• Constructing conditional FS-tree. Given the
conditional base for h, we create a tree and insert each
of the paths from the conditional base of h into it in a
backward manner. We create necessary nodes and
edges or share them when possible (incrementing
edges counts). We call this tree the conditional FS-tree
for link h. For example, given the conditional base for
link e − h the constructed conditional FS-tree is shown
in Fig. 2.

• Extracting frequent sequences: Given a conditional
FS-tree of a link h, we perform a depth first traversal
for that tree and return only sequences satisfying
MSuppCseq. By traversing the conditional FS-tree of
link e − h only the sequence <de> satisfies the
MSuppCseq, so we extract it. We then append the link
e−h to the end of it to get the full size frequent
sequence: <deh : 3> where 3 represents the support
(count) of that sequence.

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1931

Fig. 1 FS-Mine Algorithm [8]

We perform the same steps for the other frequent links in
HT, namely d − g a − b, b − c, d − e, and c − d. The
detailed mining steps for these links are shown in Table 1.
The last column in that table gives the final result for the
mining process. The generated frequent sequences are:
<deh : 3>, <abc : 4>, <cde : 4>, and <bcd : 3>in addition
to the frequent links themselves: (<eh : 3>, <dg : 4>, <ab
: 4>, <bc : 5>, <de : 6>, and <cd : 7>) as they are
considered frequent sequences of size 2.

Fig. 2 FS-Mining steps for link e – h [8]

4) Incremental Web Traversal Pattern Mining
In order to mine the web traversal patterns incrementally,
we use the previous mining results to discover new patterns
such that the mining time can be reduced. Therefore, how
to choose a well storage structure to store previous mining
results becomes very important. [3]

Fig. 3 Simple Lattice Structure [3]

The lattice structure is a well storage structure. It can
quickly find the relationships between patterns. For
example, if we want to search for the patterns related to
web page “A”, we can just traverse the lattice structure
from the node “A”. Moreover, if we want to find the
maximal web traversal patterns which are not sub-
sequences of the other web traversal patterns, we just need
to traverse the lattice structure once and output the patterns
in top nodes, whose supports are greater than or equal to
min_sup. For example, in Fig. 4, the web traversal patterns
<CE>, <ABC>, <ABD> and <CDA> are the maximal
traversal patterns.

Fig. 4: Extended Lattice Structure [3]

Our algorithm IncWTP mines the web traversal
patterns from the first level to the last levelling the lattice
structure. For each level k (k≥1), the k-web traversal
patterns are generated. There are three main steps in each
level k: In the first step, the deleted user sequences’ TIDs
are deleted from each node of the kth level and the support
count of the node is decreased if the node contains the TID
of the deleted user sequence.

In the second step, we deal with the inserted user
sequences. For each inserted user sequence u, we
decompose u into several traversal sequences with length k,
that is, all the length k sub-sequences of the user sequence
u are generated. According to the web site structure, the
unqualified traversal sequences can be pruned. For each
qualified k-traversal sequence s, if s has been contained in
a node of the lattice structure, then we just increase the
support count of this node and add TID of user sequence u
to the node. Otherwise, if all the qualified length (k-1) sub-
sequences of s are web traversal patterns, then a new node
ns which contains traversal sequence s and the TID of user
sequence u is generated in the kth level. The links between
the nodes which contain the qualified length (k-1) sub-
sequences of s in the (k-1)th level and the new node ns are
created in the lattice structure. After processing inserted
and deleted user sequences, all the k-web traversal patterns
can be generated. If the support count of a node is equal to
0, then the node and all the links related to the node can be
deleted from the lattice structure. If the support of a node is
less than min_sup, then all the links between the node and
the nodes N in the (k+1)th level are deleted, and the nodes
in N are marked. Hence, in the kth level, if a node has been
marked, then this node and the links between this node and
the nodes in the (k+1)th level are also deleted.

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1932

In the last step, the candidate (k+1)-traversal
sequences will be generated. The new web traversal
patterns in level k can be joined by themselves to generate
new candidate (k+1)-traversal sequences. Besides, the
original web traversal patterns in level k are also joined
with the new web traversal patterns to generate new
candidate (k+1)-traversal sequences. The original k-web
traversal patterns need not be joined each other, because
they are joined before. After generating the new candidate
(k+1)-traversal sequences, the original database needs to be
scanned to obtain the original support count and the TID
information for each new candidate (k+1)-traversal
sequence c. The new node nc which contains c is created
and inserted into the lattice structure. The links between the
nodes which contain the qualified length k sub-sequences
of c in the kth level and the new node nc are created in the
lattice structure. If there is no web traversal patterns
generated, then the mining process terminates.

Our incremental mining algorithm IncWTP is
shown in Fig. 5 which is the c++ like algorithm. Fig. 6
shows the function CandidateGen, which generates and
processes the candidate traversal sequences. In Fig. 5, D
denotes the traversal sequence database, W denotes the web
site structure, L denotes the lattice structure, s denotes the
min_sup, NewWTP denotes new web traversal patterns,
OriWTP denotes original web traversal patterns, InsTID
denotes the inserted user sequences’ TIDs, DelTID denotes
the deleted user sequences’ TIDs, k denotes current process
level in L, and the maximum level of the original lattice
structure is m. For instance, the maximum level of the
lattice structure in Fig. 4 is 3. All the web traversal patterns
will be outputted as the results.

Fig. 5: IncWTP(D, min_sup, W, L, InsTID, DelTID, m) [3]

Fig. 6: CandidateGen (NewWTPk , OriWTPk) [3]

B. Dynamic Mining
1) Algorithm Incremental DTM (IDTM)
The mining process with the incremental mining capability
can be decomposed into two procedures below.
a. Preprocessing procedure deals with the mining on

the original database D.
b. Incremental procedure employs for the incremental

update of the mining on an ongoing time-variant
database D’ = D + D+. [5]

Fig. 7: A time-variant transaction database [5]

In accordance with the dynamic threshold mining
techniques of algorithm DTM in the preprocessing
procedure, algorithm Incremental DTM (abbreviated as
IDTM) is devised to maintain frequent reference sequences
in the incremental procedure. Recall the time variant
database as shown in Fig. 7 again. Let tj be the last time
point of database D and tj be the last time point of
databaseD_ whereD+ represents the dataset between ti and
tj. With properly employing the cumulative information
discovered from the preprocessing procedure by algorithm
DTM, algorithm IDTM is, as will become clear later, able
to minimize the I/O cost of the incremental update on
frequent patterns to only one scan of database D’. Let LD k
be the set of frequent k-reference sequences generated by
database D. CD k represents the set of candidate k-
reference sequences generated by algorithm DTM from the
preprocessing procedure. To deal with the incremental
procedure of database D’, algorithm IDTM can be outlined
below.
Operations in line 1 are the same as those in DTM for
producing the seeds for generating ܥଶ

ᇱ. For each
subsequent pass, say pass k, we make use of SeqGenCk to
generate ܥ

ᇱ except when k = 2, we use SeqGenC2 to

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1933

generate ܥଶ
ᇱ. After one scan of the increment D+, we

obtain c.countD+ of each reference sequence c in ܥ
ᇱ.

Moreover, we can obtain c.countD’ of the reference
sequences which exist in both ܥ

ᇱ and ܮ
ᇱ . Therefore, for

each reference sequence c which exists in both ܥ
ᇱ and ܮ

ᇱ
, if c.countD_ ≥ MinSup(c, tj), we can delete c from ܥ

ᇱ
and insert it into ܮ

ᇱ ; else we only need to delete c from
ܥ
ᇱ. The reference sequences which are in ܥ

ᇱ but not in
ܮ
ᇱ are deleted from ܥ

ᇱ if c.countD+ ≤ MinSup(c, tj) −
MinSup(c, ti). In the next pass, ܥାଵ

ᇱ is generated by
SeqGenCk () which takes ܥ

ᇱ∪ ܮ
ᇱ as its argument.

Finally, we need to scan the original database D once to
update the count of candidate reference sequence in ∪kܥ

ᇱ.
It can be seen that every reference sequence c in∪kܥ

ᇱ will
be inserted into the corresponding ܮ

ᇱ if it is frequent with
respect to MinSup(c, tj).

C. Navigation Prediction
Many data mining studies have discussed the Navigation
Prediction problems for predicting the next location where
a mobile user moves to. Personal based prediction and
general-based prediction are two approaches often adopted
in this problem domain. The personal-based prediction
approach

Fig. 8: Algorithm IDTM [5]

considers movement behaviour of each individual as in
dependent and thus uses only the movements of an
individual user to predict his/her next location. On the
contrary, the general-based prediction makes a prediction
based on the common movement behaviour of general
mobile users. An innovative approach which forecasts
future locations of a user by combining predefined motion
functions, i.e., linear or non-linear models that capture
object movements as sophisticated mathematical formulas,
with the movement patterns of the user, extracted by a
modified version of the Apriori algorithm.

1) Modified Apriori Algorithm: The object of association
rules mining is large-scale databases. Low efficiency of
the mining algorithm first results in the large number of
generated candidate sets. Secondly, so many records of
database result in too many I / O spending. Based on
above analysis, in this paper, from two aspects we will
propose an optimized method for Apriori algorithm. [10]
a. Optimized Algorithm of Rreducing Candidate Itemset

Ck:
Apriori algorithm generates frequent itemset Lk from
candidate itemset Ck by scanning the database and
calculating each candidate's support count respectively.
After the generation of Ck, most of improved algorithm
will first generate all (k-1)-item subset of each element X
in Ck and compare with Lk-1. If a (k-1)-item subset is not
the element of Lk-1, then it is not a frequent itemset.
According to the property, X is not frequent, either. So X
would be deleted from Ck. This algorithm needs to search
Lk-1 for k times for each element X in Ck. In this article, we
will introduce a more efficient way to achieve the pruning
operation. The algorithm only needs to search Lk-1 one time
to complete deletion and remaining of each element X in
Ck. The ideology of the algorithm is as follows.
Inference 1: Tk is a k-dimensional itemset. If the number
of (k-1)-dimensional subsets of all (k-1)-dimensional
frequent itemset Lk-1, which contains Tk, is less than k, then
Tk is not a k-dimensional frequent itemset.
Proof: It is clear that the number of (k-1)-dimensional
subsets of Tk is k. If the number of (k-1)-dimensional
subsets of frequent itemset Lk-1 which contains Tk is less
than k, then there exists a (k-1)-dimensional subset of Tk
that is not frequent itemset. According to the property, Tk is
not a k dimensional frequent itemset. As a result, the
improved algorithm only needs to compare the count of
each element of Lk-1with the count of each element (X) of
Ck (each element X has a count). If the count of the
element X equals to k, then maintain X. Otherwise X must
be a non-frequent itemset, it should be deleted. [10]

b. Deduce I/O Spending: Inference 2: T is a transaction

record in transaction database D. If the total number (m)
of all the valid data in T is less than k (dimension of
frequent itemset Lk), then we won’t find any elements X
of frequent itemset Lk in T.

Proof: Obviously as we know that if transaction record T
contains 2 valid data (m=2) and the dimension of frequent
item set L3 is 3, then any element X in L3 will have at least
3 items. In any case, we cannot find an element with 3
items in the record with only 2 valid data. As a result,
compressing transaction database can be considered in two
ways. If one data of the transaction database D no longer
appears in frequent item set Lk, then this data will not
appear in any other k+n (n>1) frequent itemset Lk+n. So this
data could be revised to 0 or null
(invalid value); In addition, when frequent itemset Lk has
been found and if the number of the current transaction
record is less than k+1, according to inference 2, we can
see that any (k+1)-dimensional subsets of frequent item
Lk+1 could not be found in this transaction. So this
transaction record could be deleted.

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1934

D. Mining Web Navigation Patterns With Dynamic
Thresholds System

We study a novel efficient incremental algorithm for
mining web navigation patterns with dynamic thresholds
named id-Matrix-Miner (Inverted-database Matrix Miner),
for re-mining all the web navigation patterns when the
database is updated. Furthermore, a novel structure we
proposed named id-Matrix (Inverted-database Matrix) and
inverted file database are selected as our storage structure
for id-Matrix-Miner to store original web dataset.
The id-Matrix is kept in memory and the projected
database is store in hard disk. That is, all of the necessary
information in original web dataset is stored in these two
kinds of storage. Hence, id-Matrix-Miner can avoid
unnecessary scanning of the original web dataset. Thus, I/O
cost could be frugal. Moreover, based on the id-Matrix-
Miner, we propose a navigation prediction model which
could handle such incremental mining environment.

Fig. 9: Apriori Algorithm [10]

1) id-Matrix and Inverted-database: The objective of the
id-Matrix (Inverted-database Matrix) and Inverted-
databases is to store the necessary information to avoid
scanning original database such that the efficiency of id-
Matrix-Miner could be improved. The Inverted-database
Matrix is kept in memory, and the Inverted-database is
store in hard disk. Each entry of the Inverted-database
Matrix consists of the following three components: 1) a
link which points to an inverted database, 2) count of a
navigation pattern with length 2. Now we take an
Example to describe the Inverted-database Matrix. Table
3.1 shows an original database example which contains 5
sequences, where the column of id represents the id of a
maximal forward references and the column of sequence
represents the maximal forward references. After one
pass of the database scan, we have the Inverted-database
Matrix and several inverted-databases as shown in Fig.
10. At the same time, all the entry whose count is
increased will be mark.

TABLE I
ORIGINAL DATABASE [1]

The term inverted-database can be defined as an inverted

file of a projected-database. For above instance, the <AB>-
projected-database consists of two sequences <CD> and
<0>. For each web page in <AB>- projected-database, we
can record references to sequences and positions within
sequences to yield <AB>-Inverted-database. In which, 0:
(1, 2) means the web page 0 is in the sequence whose id is
1, and it is the second web page in that sequence.
After obtaining Inverted-database Matrix and all inverted-
database, the necessary information can be store to avoid
scanning original database.

Fig. 10: An Example of Inverted-database Matrix [1]

2) id-Matrix-Miner : After obtaining the id-Matrix
(Inverted database Matrix) and Inverted-database, next
step is to mine the web navigation patterns from the id-
Matrix and the Inverted-database. Consider web
navigation sequence database as Table 3.1 and the
threshold of each web page as Table 3.2, for each entry
(i, j) which is marked in the id-Matrix, id-Matrix-Miner
will perform four main steps on the entry:

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1935

TABLE III
WEB PAGE THRESHOLD [1]

a. Check pattern <i,j>: We first check whether the count of

entry (i,j) is equal to or greater than min{ min_sup(i),
min sup(j)}. The pattern <i,j> will be outputted if the
count of entry (i,j) is equal to or greater than min{
min_sup(i), min_sup(j)}. For example, in Fig. 10, the
entry (A, D) is greater than min { min_sup (A),
min_sup(D)} = l. Thus, the pattern <AD> should be
outputted.

b. Load the Inverted-database in main memor. We then
load the <i,j>-Inverted-database in main memory if the
count of entry (i,j) is equal to or greater than
min{min_sup(p)| for all web page p in the <i,j>-Inverted-
database}. For example, in Fig. 10, the entry (A, B) is
greater than min{ min_sup(C), min_sup(D)} = 1. Thus,
the <AB>-Inverted-database should be loaded into main
memory.

c. Count the single web page: After the Inverted-database
is loaded in main memory, for each web page in the
Inverted-database, we then count the number of location
is the first by one pass of the Inverted-database scan. If
the count of web page X is equal to or greater than min {
{min sup(X)} U {min sup(Pi)| 1≤ i ≤ n and <P1P2 ... Pn>
is the prefix of the Inverted-database}}, the pattern <P1P2
... PnX> will be outputted. For example, in Fig. 11, the
web page 0 has only one location is first, (2,1). So the
count of web page 0 is 1 and equal to min{ min_sup (C),
min_sup (A), min_sup(B)} = l. Thus, the pattern <ABO>
should be outputted.

Fig. 11: Count the Single Web Page [1]

d. Produce local Inverted-database: We then perform a
second scan of the Inverted-database to obtain the local
Inverted-databases. For each nonempty local Inverted-
database, if the count of its prefix is equal to or greater
than min {min_sup (p)| for all web page p in the local
Inverted-database }, we make the local Inverted-database
as input and go to the step 3 (count the single web page).
For example, in Fig. 12, the count of <ABC> is greater
than min{min_sup(D)} = 1. Thus, we will make the
<ABC>-Inverted-database as input and go to the step 3.

We then address how to perform id-Matrix-Miner on them.
After one pass of the database scan, we have the Inverted-
database Matrix and several Inverted-databases as shown
in Fig. 13.

Fig. 12: An Example of Inverted-database Matrix [1]

At the same time, all the entry whose count is increased
will be mark. Then, we only need to perform id-Matrix-
Miner on the entry which is marked. For example, in Fig.
13, only entries (A,B), (A,C), (A,D), (B,A), (B,D), and
(C,A) should be visited.

Fig. 13: An Example of Inverted-database Matrix [1]

E. Pattern Tree Construction

After web navigation pattern mining, such patterns
could provide several decision rules for location prediction.
For example, if a pattern <A, B, C, D> is discovered from a
web
data, we can predict that he/she may browse page C after
browsing page A and then B. Therefore, by matching a
mobile user’s recent click behaviour to his/her web
navigation patterns, we can predict his/her next browsed
page. However, it is clear to observe that the longer pattern
we mine the more sub sequences will be generated due to
the downward closure property. It leads to a loss of
efficiency because all the sub sequences of a long pattern
need to be considered in the next location prediction. For
example, the sub sequences of the pattern <A, B, C> are
<A>, , <C>, <A, B>, <B, C>, and <A, C>. It is very
time-consuming to match the current move of a mobile
user to all his/her web navigation patterns one by one. To
make the prediction phase efficient, we adopted a prefix
tree, named web navigation pattern tree (WNP-Tree), to
compactly represent a collection of web navigation
patterns. Note that the path of a WNP-Tree indicates a
decision rule. The WNP-Tree is a kind of decision tree,
where each node v consists of tree element, web page set,
support, and children.
The WNP-Tree Building algorithm, shown in Fig. 14,
describes how to build the WNP-Tree from web navigation
patterns set (WNP-Set). In the following, we introduce the
notion of prefix of a web navigation pattern. For simplicity,
we consider a web navigation pattern as a sequence of web
page labels. Each web navigation pattern belonging to the
WNP-Set is inserted into the WNP-Tree. Intuitively, given
a web navigation pattern WNP, we search the tree for the
path corresponding to the longest prefix of WNP. Next, we
append a branch to cover the remaining elements of WNP
in this path.

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1936

Fig. 14: WNP-Tree Building Algorithm [1]

A web navigation pattern is appended to a path in the tree
if this path is a prefix of web navigation pattern. When the
pattern is appended to a path, the support value will be
updated if the support value of pattern is greater than the
support value of the node (see Line 5 to 9 of Fig. 14). The
CreateNode(web page, support, children) function returns
the node which stores the web page label, support value,
and children list. The appendChild(child) procedure
appends another node to the children list of a node (see
Line 10 to 13 of Fig. 14).

Fig. 15: An Example of WNP-Tree [1]

As shown in Take Table 3.2, the web navigation pattern is
mined from the web navigation dataset. Fig. 15 shows the
corresponding web navigation pattern tree. The path with
only one node will be eliminated from the pattern tree, e.g.,
the pattern <C> is not shown in the pattern tree. Since the
tree can be modified in real time, this tree based storage
could handle the incremental mining environment well.
When the new patterns are obtained or old patterns are
deleted, we can easily modify the tree for navigation
prediction.

F. Navigation Prediction
Given a web user, the prediction model predicts her next
browsed page on her own web navigation pattern tree.
Given this pattern tree, the browsing information (i.e., the
web navigation patterns) user belong can be utilized in the
prediction. Thus, given the browsing sequence of a user's
recent click behavior, we compute the best matching scores
of candidate paths in these two pattern trees. The matching
scores are computed by formula as follows:

Fig. 16: An Example of Path Matching [1]

In order to simplify the matching process, the current user's
recent click behaviours are transformed into a web page
sequence. Moreover, since the web page sequence may
consist of too many web pages, it is very time consuming
to consider all possible sub sequences of the web page
sequence in the matching step. Therefore, we propose a
partial matching strategy which does not consider all the
possible sub sequences of the web page sequence. Instead,
the score of click behaviour captures three heuristics: 1)
outdated browsed pages may potentially deteriorate the
precision of predictions; 2) more recent browsed pages
potentially have more important impacts on predictions;
and 3) the matching path with a higher support and a
higher length may provide a greater confidence for
predictions. Given a mobile user's web page sequence S
and a matching path P in WNP-Tree, we propose a
weighted scoring function, mScore(P, S), as defined in
Equation (2).

TABLE IIIII
AN EXAMPLE OF MATCHING PATHS [1]

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1937

Finally, we use Equation (2) to evaluate the score of each
page. We predict the children of the candidate path with
the highest score as the answer. Take Fig. 16 as an
example, the match path and its score is shown as table 3.3.
The path A B has greatest score. Thus we predict the
user may browse the web page C. Note that if the path with
the highest score has no children, we predict the children of
the candidate path with the second highest score, and so on.

G. COMPARISON OF DIFFERENT NAVIGATION
PREDICTION TECHNIQUES

We had compared Different Navigation Prediction
Techniques like Mining Web Navigation Patterns with
Dynamic Thresholds, Efficient Incremental Mining of
Qualified Web Traversal Patterns without Scanning
Original Databases, Efficient Incremental Algorithm for
Mining Web Traversal Patterns and Collaborative Filtering
by Mining Association Rules from User Access Sequences
based on criteria’s like data structure used for intermediate
storage and mining, original database used for mining, re-
mining is done to track changes in the web structure,
pattern tree construction for improving prediction phase
and Technique used for navigation prediction. TABLE IV
shows the comparison result of all four Navigation
Prediction Techniques.

III. CONCLUSION
We have studied an efficient incremental data mining
algorithm named id-Matrix-Miner for mining web
navigation patterns with dynamic threshold. We also
studied a new data structure, id-Matrix, for storing the
useful
The prediction model predicts user next browsed page on
users own web navigation pattern tree. Pattern tree, the
browsing information user belong can be utilized in the
prediction. The browsing sequence of a user’s recent click
behaviour, we compute the best matching scores of
candidate paths by using formula. The score of click
behaviour captures three heuristics: 1) outdated browsed
pages may potentially deteriorate the precision of
predictions; 2) more recent browsed pages potentially have
more important impacts on predictions; and 3) the
matching path with a higher support and a higher length
may provide a greater confidence for predictions where
other prediction is done on only one technique where in our
prediction model prediction is done by two technique one
is Web Navigation Pattern Tree (WNP-Tree) and other is
matching scores of candidate paths by using formula to
select best predicted path.

TABLE IVV COMPARISION OF DIFFERENT NAVIGATION PREDICTION TECHNIQUES [1]

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1938

REFERENCES

[1] Jia-Ching Ying, Chu-Yu Chin and Vincent S. Tseng, “Mining Web
Navigation Patterns with Dynamic Thresholds for Navigation
Prediction,” 2012 IEEE International Conference on Granular
Computing.

[2] Jia-Ching Ying, Vincent S. Tseng and Philip S. Yu, “Efficient
Incremental Mining of Qualified Web Traversal Patterns without
Scanning Original

Databases,” 2009 IEEE International Conference on Data Mining
Workshops.

[3] Show-Jane Yen, Yue-Shi Lee and Min-Chi Hsieh, “An Efficient
Incremental Algorithm for Mining Web Traversal Patterns,”
Proceedings of the 2005 IEEE International Conference on e-
Business Engineering (ICEBE’05).

[4] Mei-Ling Shyu, Choochart Haruechaiyasak and Shu-Ching Chen and
Na Zhao, “Collaborative Filtering by Mining Association Rules
from User Access Sequences,” Proceedings of the 2005
International Workshop on Challenges in Web Information Retrieval
and Integration (WIRI’05).

[5] AG. Buchner, M. Baumgarten, S.S. Anand, Maurice D. Mulvenna,
and .l.G. Hughes. Navigation pattern discovery from internet data. In
Proc. of the Web Usage Analysis and User Profiling Workshop,
pages 25 -30. 1999.

[6] J. Borges and M. Levene. Data mining of user navigation patterns. In
Proceedings of WEBKDD '99.92-111.

[7] M.S. Chen, J.S. Park, P.S. Yu. Efficient data mining for path traversal
patterns. IEEE Trans. Know!. Data Eng. 10(2),209-221 (1998).

[8] M. EL-Sayed, C. Ruiz, and E. A Rundensteiner. FS-Miner: Efficient
and Incremental Mining of Frequent Sequence Patterns in Web logs.
In Proceedings ofWIDM'04, 128-135.

[9] J.C Ou, CH Lee, M.S. Chen. Eflicient algorithms for incremental
Web log mining with dynamic thresholds. The VLDB Journal
(2008) 17:827-845.

[10] WanjunYu, XiaochunWang, Fangyi Wang, Erkang Wang, Bowen
Chen. “The Research of Improved Apriori Algorithm for Mining
Association Rules” 2008 11th IEEE International Conference on
communication Technology.

Prasad J. Koyande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1930-1939

www.ijcsit.com 1939

